
EPiC Series in Computing
Volume 41, 2016, Pages 314–328

GCAI 2016. 2nd Global
Conference on Artificial Intelligence

Learning Partial Lexicographic Preference Trees and
Forests over Multi-Valued Attributes

Xudong Liu1,2∗and Miroslaw Truszczynski1

1 University of Kentucky, USA
{liu,mirek}@cs.uky.edu

2 University of North Florida, USA
xudong.liu@unf.edu

Abstract

Partial lexicographic preference trees, or PLP-trees, form an intuitive formalism for compact repre-
sentation of qualitative preferences over combinatorial domains. We show that PLP-trees can be used
to accurately model preferences arising in practical situations, and that high-accuracy PLP-trees can
be effectively learned. We also propose and study learning methods for a variant of our model based
on the concept of a PLP-forest, a collection of PLP-trees, where the preference order specified by a
PLP-forest is obtained by aggregating the orders of its constituent PLP-trees. Our results demonstrate
the potential of both approaches, with learning PLP-forests showing particularly promising behavior.

1 Introduction
Preferences are ubiquitous in decision making. They have been extensively studied by re-
searchers in artificial intelligence, psychology, operations research, and social choice theory.
Learning preference models, that is, expressions concisely representing a preference order has
been central to this research. Much of the attention was focused on learning utility functions
that represent preference orders quantitatively [7].

Recently, researchers proposed several qualitative models of preference orders arguing that
they are more directly aligned with conventions humans use when expressing their preferences.
They include conditional preference networks (CP-nets) [2], and models ordering outcomes
lexicographically such as lexicographic strategies [16], conditional preference trees (CP-trees)
[17], lexicographic preference trees (LP-trees) [1], conditional lexicographic preference trees [3],
partial lexicographic preference trees (PLP-trees) [12], and preference trees [6, 13]. As with
quantitative models, learning qualitative models is important because eliciting them directly
from users is often impractical. However, while learning CP-nets has received a fair amount of
attention [11, 5, 10, 9], the study of learning lexicographic models is still in the early stages.
The results obtained so far concern mostly learning LP-trees [1] and conditional lexicographic
preference trees [3]. Other models received less attention. In particular, no algorithms for

∗The results of this paper were obtained when Xudong Liu was a Ph.D. student at the University of Kentucky.
The final version of the paper was prepared after he joined the University of North Florida – his current affiliation.

C.Benzmüller, G.Sutcliffe and R.Rojas (eds.), GCAI 2016 (EPiC Series in Computing, vol. 41), pp. 314–328

Learning Partial Lexicographic Preference Trees and Forests Liu and Truszczynski

learning PLP-trees have yet been proposed even though PLP-trees retain the simplicity of
LP-trees but also offer flexibility that makes them less sensitive to overfitting.

In this work, we study the problem of learning PLP-trees over multi-valued attributes, which
generalize the original binary version of PLP-trees [12]. As in the binary case, multi-valued
PLP-trees can be grouped into four classes that capture different types of orders: unconditional
importance and unconditional preference (UIUP) trees, unconditional importance and condi-
tional preference (UICP) trees, conditional importance and unconditional preference (CIUP)
trees, and conditional importance and conditional preference (CICP) trees.

The computational complexity of learning PLP-trees is well understood. Schmitt and Mar-
tignon [16] showed that for lexicographic strategies, a special case of UIUP PLP-trees, comput-
ing a lexicographic strategy maximizing the number of correctly handled examples is NP-hard,
and Liu and Truszczynski [12] extended this result to other classes of PLP-trees. Therefore,
in this paper, we focus on the problem of practicality of learning PLP-trees and using them
to represent preferences. To this end, we introduce several best-agreement and approximate
algorithms to learn PLP-trees (of the four types above). We show experimentally that they
are effective on several domains and datasets, and generate trees that accurately approximate
the preference order being modeled. To support our experiments, following Bräuning and
Hüllermeier [3], we generated a library of datasets of preference examples deriving them from
datasets of examples developed by the machine learning community to support research on the
classification problem.

When learning a decision tree, a problem that may arise is overfitting. To reduce its effect,
Breiman [4] proposed learning a random forest, that is, a set of uncorrelated decision trees
learned from randomly selected sets of examples. The random forest learning algorithm [4] first
generates several decision trees (a forest), randomizing the attributes used in their construction.
To classify an instance, the algorithm aggregates the predictions made by the trees in the forest
using the majority rule. We adapted that approach to the setting of PLP-trees. A PLP-forest is
a collection of PLP-trees. PLP-trees in a PLP-forest are learned using randomly selected small
fragments of a training set. To predict if one outcome is preferred over another, we apply the
pairwise majority rule (PMR), a simple and effective voting rule studied in social choice. We
adjust algorithms learning PLP-trees to the setting of PLP-forests and study their effectiveness
both in terms of time and accuracy.

The key findings supported by our results are: (1) PLP-trees and PLP-forests are expressive
preference models. Experiments with the datasets we constructed from commonly used machine
learning classification domains showed that the accuracy of learned models typically exceeded
85%, often exceeded 90%, and in some cases was as high as 95%. (2) PLP-forests aggregated
by PMR provide in general higher accuracy than PLP-trees. (3) PLP-trees and PLP-forests
learned by a greedy approximation method have accuracy comparable to best-agreement PLP-
trees and PLP-forests learned by maximizing the number of correctly handled examples in the
training set. Moreover, because of overfitting arising in “best-agreement” trees and forests, in
some cases, heuristic approaches offer an even better accuracy. (4) Approximation learning
methods are fast and can work with large datasets; methods based on learning best-agreement
trees can also be effective in practice, especially when we learn PLP-forests, where we bound
the number of examples each tree in the forest is learned from.

2 Partial Lexicographic Preference Trees
PLP-trees were originally defined to represent preference orders over combinatorial domains
with binary attributes [12]. In this work, we expand the definition to the general case where
attributes are multi-valued (not necessarily binary), which is relevant to practical applications.

315

Learning Partial Lexicographic Preference Trees and Forests Liu and Truszczynski

Let A = {X1, . . . , Xp} be a set of attributes, with each Xi having a domain Di, with the sizes
of all domains bounded by a constant. The corresponding combinatorial domain over A is the
Cartesian product CD(A) = D1 × . . .×Dp. Elements in CD(A) are called outcomes.

A PLP-tree over CD(A) is an ordered labeled tree, where: (1) every non-leaf node is labeled
by some attribute from A, say Xi, and by a local preference >i, a total strict order on the
corresponding domain Di; (2) every non-leaf node labeled by an attribute Xi has |Di| outgoing
edges; (3) every leaf node is denoted by 2; and (4) on every path from the root to a leaf each
attribute appears at most once as a label.

Each outcome α ∈ CD(A) determines in a PLP-tree T its outcome path, P (α, T). It starts
at the root of T and proceeds downward. When at a node n labeled with an attribute X, the
path descends to the next level based on the value α(X) of the attribute X in the outcome α
and on the local preference order associated with n. Namely, if α(X) is the i-th most preferred
value in this order, the path descends to the i-th child of n.

The shared path segment of α and β in T is the longest common prefix of both P (α, T) and
P (β, T). If the last node on that segment is not a leaf, we call this node the divergence node
for α and β. We say that outcome α is at least as good as β (αT �T β) if (1) the divergence
node is not defined (the last node on the shared path segment is a leaf, and so both outcomes
end up in the same cluster of equivalent outcomes), or (2) the divergence node is defined and
α(XDiv) >Div β(XDiv), where XDiv is the attribute labeling the divergence node and >Div is the
local preference order on the domain of XDiv. Clearly, the condition (1) defines the associated
equivalence relation ≈T and the condition (2) defines the associated strict order relation �T .

To illustrate, let us consider the domain of cars described by four multi-valued attributes.
The attribute BodyType (B) has three values: minivan (v), sedan (s), and sport (r). The Make
(M) can be either Honda (h) or Ford (f). The Price (P) can be high (g), low (l), or medium
(d). Finally, Transmission (T) can be automatic (a) or manual (m). An agent could specify
her preferences over cars as a PLP-tree T in Figure 1. The tree tells us that BodyType is the
most important attribute to the agent and that she prefers minivans, followed by sedans and by
sport cars. Her next most important attribute is contingent upon what type of cars the agent is
considering. For minivans, her most important attribute is Make, where she likes Honda more
than Ford. Among sedans, her most important attribute is Price, where she prefers medium-
priced cars over low-priced ones, and those over high-priced ones. Among sport cars, her top
priority is transmission and she prefers manual to automatic.

B v > s > r

Mh > f P d > l > g T m > a

Figure 1: A PLP-tree T over the car domain

Let us consider a Ford sedan with a middle-range price and an automatic transmission
(〈s, f, d, a〉, in our notation) and a Honda sedan with a high-range price and a manual trans-
mission (that is, 〈s, h, g,m〉). Writing c1 and c2 for the two cars, respectively, and traversing
the tree T , we see that cars c1 and c2 diverge on the node labeled by attribute P , and that
c1(P) > c2(P). As a result, we obtain that c1 �T c2 (c1 is better than c2).

In the worst case, the size of a PLP-tree is exponential in the number of attributes in A.

316

Learning Partial Lexicographic Preference Trees and Forests Liu and Truszczynski

However, a special structure in some PLP-trees allows us to “collapse” them and obtain more
compact representations. Let R ⊆ A be the set of attributes that appear in a PLP-tree T . We
say that T is collapsible if there is a permutation R̂ of elements in R such that for every path
in T from the root to a leaf, attributes that label nodes on that path appear in the same order
in which they appear in R̂.

B r > s > v

Tm > a

Mf > h M h > f

M h > f

(a) Collapsible PLP-tree

B

T

M

r > s > v

r : m > a

rm : f > h

ra : h > f

v : h > f

(b) UICP PLP-tree

Figure 2: PLP-trees over the car domain

If a PLP-tree T is collapsible, we can represent T by a single path of nodes labeled with
attributes according to the order in which they occur in R̂, where a node labeled with an
attribute Xi is also assigned a conditional preference table (CPT) that specifies preferences
on Xi, conditioned on values of ancestor attributes in the path. These tables make up for
the lost structure of T as different ways in which ancestor attributes evaluate correspond to
different locations in the original tree T . Missing entries in the CPT of Xi imply that under
the corresponding conditions, all values of Xi are equivalent (equally good). The PLP-tree in
Figure 2a is collapsible, and can be represented compactly as a single-path tree with nodes
labeled by attributes and CPTs (cf. Figure 2b). The CPT for T (M) indicates that preferences
on the values of T (M) depend on B (B and T , respectively), and both of these CPTs are
incomplete with missing entries. For instance, the agent is indifferent between automatic and
manual transmissions when the body type is minivan and sedan. (Incidentally, the PLP-tree in
Figure 1 is collapsible, too.)

Collapsible PLP-trees represented by a single path of nodes are called unconditional im-
portance trees or UI trees, for short. The name reflects the fact that the order of attributes
on outcome paths is not conditioned on the values of ancestor attributes. A collapsed UI tree
may have size substantially smaller than the “uncollapsed” one, especially if local preferences
depend on few ancestor attributes. Of particular interest are collapsible trees whose all nodes
labeled with the same attribute are assigned the same local preference order. In their collapsed
representation, CPTs assigned to nodes consist of a single unconditioned entry. Such UI trees
are called UIUP trees, with UP indicating unconditional preference. Clearly, the collapsed rep-
resentation of a UIUP tree is exponentially smaller than its explicit representation. The UIUP
tree in Figure 3b is the collapsed representation of the collapsible PLP-tree in Figure 3a.

To stress that local preferences may be conditional, we will use the term UICP trees when
referring to UI trees that are not UIUP trees. Among UICP trees, of practical interest are those
where the number of parents is bounded by some fixed small integer k independent of p, and
the CPTs are complete. We call this type of trees UICPk PLP-trees. In this case, the sizes of
the CPTs and, consequently, the sizes of the trees are polynomial in the number of attributes.
An example UICP1 tree is shown in Figure 3c. One can show that our earlier definition of the
preference relation �T given for the “full” representation of PLP-trees can be adapted to work
with collapsed PLP-trees (i.e., UI trees).

317

Learning Partial Lexicographic Preference Trees and Forests Liu and Truszczynski

T m > a

Mh > f M h > f

(a) Collapsible PLP-tree

T m > a

M h > f

(b) UIUP PLP-tree

B

M

T

s > r > v

f > h

s : a > m

r : m > a

v : a > m

(c) UICP1 PLP-tree

Figure 3: More PLP-trees over the car domain

In general, PLP trees do not need to be collapsible and the order of attributes on paths
from the root to leaves may differ from path to path and so, the importance of attributes is
conditional. We refer to such PLP trees as conditional importance trees or, CI trees. Depending
on whether preferences in CI trees are unconditional or not, we refer to them as conditional
importance and unconditional preference trees (or CIUP trees), and conditional importance and
conditional preference trees (or CICP trees). We refer to the paper by Liu and Truszczynski
[12] for formal definitions and examples of CI PLP-trees.

We now formally define the learning problem we study and comment on its complexity. In
the problem we are given a set of examples, that is, expressions (α, β,�) and (α, β,≈), where
α and β are outcomes. Examples of the first type are strict examples and of the second type
equivalence examples. A PLP-tree T satisfies a strict example (α, β,�) if α �T β. Similarly,
T satisfies an equivalence example (α, β,≈) if α ≈T β. The goal is to compute a PLP-tree (of
a specified type) that satisfies the maximum number of examples from the input set. We refer
to this problem as MaxLearn.

The MaxLearn problem is NP-hard for each of the four classes of PLP-trees we discussed
(when applicable, assuming that we learn collapsed representations). This is an easy con-
sequence of the fact that the corresponding decision versions of the problem (asking for the
existence of a PLP-tree of a given type satisfying at least k examples from the input set, where
k is another input parameter) are NP-complete [12].

2.1 Algorithms learning PLP-trees
We will now outline best-agreement (exact) and greedy (approximation) learning algorithms
for the MaxLearn problem. For simplicity, we restrict attention to the case when all examples
are strict.

To find the best-agreement model, that is, to compute a PLP-tree (of a specified type) that
maximizes the number of satisfied examples, we used answer-set programming (ASP) [14, 15]
and its gringo/clasp grounder-solver tool [8]. This approach consists of two logical programming
modules: the data module describing the dataset (i.e., attributes, domains, outcomes and
examples), and the rule module applying an optimization statement to search for a PLP-tree
that correctly decides as many examples as possible. Given an instance of the MaxLearn
problem expressed as the two modules, the ASP tool gringo/clasp computes an answer set
encoding the PLP-tree that is a solution to the input instance.

Our method to solve the MaxLearn problem approximately, that is, to compute a PLP-
tree that satisfies possibly many examples (but perhaps not the maximum number) is based on

318

Learning Partial Lexicographic Preference Trees and Forests Liu and Truszczynski

a greedy approach. It is similar to the greedy method proposed by Schmitt and Martignon [16]
to learn the so called UIFP trees.1 A formal description of the greedy algorithm is included in
the appendix.

The algorithm has two versions, one to learn UI trees and the other one to learn CI trees.
Both versions start with a “configuration” (E�,A, n), where E� is the input set of all strict
examples, A is the set of attributes of the domain of the problem, and n is a node (initially, a
node to serve as the root of the tree to learn). Both versions set T = n and store (E�,A, n) in
an auxiliary set C. Upon termination, T is the root of the learned tree.
UI tree learning: In this case, C consists always of exactly one configuration (E�,A, n). In
each iteration, n is labeled with an attribute Xl ∈ A and with a CPT for Xl to maximize
the number of examples in E� that are correctly decided by Xl under the selected CPT.2 The
algorithm updates E� by removing all examples decided (correctly or incorrectly) by Xl and
its CPT, updates A by removing Xl, creates a new node n′, makes n its parent, and updates n
to n′. It then processes this new configuration. The process terminates when E� is empty.

We implemented UI tree learning algorithm in two versions in which each CPT consists
of a single unconditional preference preference order (to learn UIUP trees), or is a full CPT
conditioned on values of at most one attribute (to learn UICP1 trees).
CI tree learning: In each iteration, the algorithm removes one configuration (E�,A, n) from
C. The algorithm picks an attribute Xl and a preference order for Xl at n (not a CPT, as
here the structure of the tree is used to model conditional preferences) so that to maximize the
number of examples in E� correctly decided at this node. If we are learning CIUP trees, the
choice of the preference order is restricted: if Xl has already been used as a label before, we
have to use the preference order we originally assigned to Xl with all nodes we label with Xl.
The algorithm updates E� by removing all examples decided at n (correctly or incorrectly),
and A by removing Xl. At this point, both outcomes of every example in E� have the same
value on Xl (otherwise, the example would be decided, correctly or not, by Xl). For each value
xl,i of Xl, the algorithm creates a node ni, makes n the parent of ni, and sets E�i to consist
of all examples in E� whose both outcomes have value xl,i on Xl. It then adds (E�i ,A, ni) to
C. When the new set C is computed, the algorithm starts the next iteration. Configurations
with the empty set of examples become leaves and the process ends when they are no more
configurations to process.

We note that CIUP tree learning algorithm returns different trees depending on the order
in which configurations in C are considered. We studied two versions based on the depth-first
order (using a stack to represent C), and the breadth-first order (using a queue to represent
C), resulting in CIUPd and CIUPb trees, respectively.

2.2 Experiments
We studied the performance of our algorithms by experimenting with them on datasets we
derived from publicly available classification datasets in the University of California at Irvine
Machine Learning Repository. The datasets are listed in Table 1 and their characteristics (the
numbers of attributes and outcomes, and strict and equivalence examples) are given in Table
2. The appendix describes the datasets in more detail.

First, we discuss learning UIUP PLP-trees using the best-agreement and greedy methods.
The goal is to compare the accuracy of both methods. This is important as the best-agreement

1They are UIUP trees in which the order on the values of the domain of every attribute is fixed a priori and
must be used in the tree.

2A strict example is decided at a node, if the two outcomes of the example have different value on the
attribute labeling the node. It is correctly decided, if the (strict) relation in the example agrees with the local
preference relation on the values of the outcomes in the example.

319

Learning Partial Lexicographic Preference Trees and Forests Liu and Truszczynski

Table 1: Classification datasets in UCI Ma-
chine Learning Repository used to generate
preference datasets

Preference Classification Datasets
Datasets in UCI MLR
BCW Breast Cancer Wisconsin
CE Car Evaluation
CA Credit Approval
GC Statlog (German Credit Data)
IN Ionosphere
MM Mammographic Mass
MS Mushroom
NS Nursery
SH SPECT Heart
TTT Tic-Tac-Toe Endgame
VH Statlog (Vehicle Silhouettes)
WN Wine

Table 2: Description of preference datasets in
the library

Dataset p |X | |E�| |E≈|
BCW 9 270 9,009 27,306
CE 6 1,728 682,721 809,407
CA 10 520 66,079 68,861
GC 10 914 172,368 244,873
IN 10 118 3,472 3,431
MM 5 62 792 1,099
MS 10 184 8,448 8,388
NS 8 1,266 548,064 252,681
SH 10 115 3,196 3,359
TTT 9 958 207,832 250,571
VH 10 455 76,713 26,572
WN 10 177 10,322 5,254

method, because of its complexity, can only be used on relatively small example sets.
For a dataset D (where D is one of the twelve datasets we studied), we fix the size of the

training set to t, where 1 ≤ t ≤ 250. Then, we randomly pick TRD ⊆ E�, where |TRD| = t, as
the set of training examples, and use TED = E�\TRD as the set of testing examples. Based on
training examples in TRD, we learn a UIUP PLP-tree TBA using the best-agreement method,
and a UIUP PLP-tree TG using the greedy heuristics. We then verify the models TBA and TG
on testing examples in TED and compute the accuracy of each method, as the percentage of
strict examples in TED decided correctly by the corresponding tree. For each t, 1 ≤ t ≤ 250, we
repeat this process 20 times and compute the average accuracies. Figure 4 shows the learning
curves (the accuracies as the function of the size of the training set) for the best-agreement
method (BA-UIUP) and the greedy algorithm (G-UIUP) for the datasets CE, IN, MS and WN.
We show the accuracies for the two methods on all datasets when t = |TRD| = 250 in Table 3.

This experiment shows that, when the number of training examples is small, the greedy
approach achieves accuracy comparable with that of the best-agreement method. The results
summarized in Table 3 show that (1) the greedy algorithm already achieves accuracy exceeding
85% on six datasets (most notably, the accuracy of 95.5% on WN); and (2) the greedy algorithm
performs very close to the best-agreement method, with the difference within 2 percentage
points on all but two datasets, IN and MS. Examining the learning curves in Figure 4(a) and
(d) (they are representative of 10 out of 12 datasets — all but IN and MS), we observe that
the greedy algorithm works well compared with the best-agreement method across the range
of the training set sizes. The learning curves for the two datasets on which the greedy method
lags behind the best-agreement one are shown in Figure 4(b) and (c).

Since the best-agreement method quickly fails as the training sample size grows (the problem
is NP-hard), in experiments with large learning sets we only used the greedy heuristics. As
demonstrated above, the greedy heuristics is a good alternative to the best-agreement method.
For a dataset D, we generate TRD ⊆ E� as the training set, and use TED = E� \TRD as the
testing set. We learn UIUP, UICP1, CIUPb, and CIUPd trees based on TRD using the greedy
heuristics, and then we verify the trees on the testing set TED, computing their accuracy.
Table 4 shows the accuracies of trees learned from training sets of size 70% of the of E�.3

3As in the previous experiment, we computed the learning curves by varying the size of the training set up
to 70% of the size of E�. The curves show similar behavior to those presented earlier — the accuracy increases
with the size of the training set, but gets close to the maximum accuracy already for relatively small training
sets.

320

Learning Partial Lexicographic Preference Trees and Forests Liu and Truszczynski

Table 3: Accuracy (percentage of correctly handled testing examples) for UIUP PLP-trees
learned using the best-agreement and the greedy methods on the learning data (250 of E�)

Dataset BA-UIUP G-UIUP
BCW 88.4 88.2
CE 84.8 83.6
CA 91.1 89.3
GC 72.2 72.2
IN 87.0 79.6
MM 87.5 86.8
MS 84.8 70.3
NS 91.8 91.7
SH 93.2 92.6
TTT 72.1 71.9
VH 76.8 76.6
WN 96.0 95.5

Sample size
50 100 150 200 250

A
c
c
u
ra

c
y
 o

n
 T

e
s
ti
n
g
%

0.4

0.5

0.6

0.7

0.8

0.9

1

BA-UIUP

G-UIUP

(a) CE

Sample size
50 100 150 200 250

A
c
c
u
ra

c
y
 o

n
 T

e
s
ti
n
g
%

0.4

0.5

0.6

0.7

0.8

0.9

1

BA-UIUP

G-UIUP

(b) IN

Sample size
50 100 150 200 250

A
c
c
u
ra

c
y
 o

n
 T

e
s
ti
n
g
%

0.4

0.5

0.6

0.7

0.8

0.9

1

BA-UIUP

G-UIUP

(c) MS

Sample size
50 100 150 200 250

A
c
c
u
ra

c
y
 o

n
 T

e
s
ti
n
g
%

0.4

0.5

0.6

0.7

0.8

0.9

1

BA-UIUP

G-UIUP

(d) WN

Figure 4: Learning UIUP PLP-trees

From Table 4 we note that for the greedy algorithm: (1) for all datasets, there is a clear
gain in the accuracies for the UIUP trees learned from larger training sets (cf. Table 3); (2)
for all but one dataset (IN), the UICP1 trees, which allow for simple conditional preference
statements, are more accurate than the UIUP trees; (3) both the CIUPb and CIUPd models are
more accurate than the UIUP models for all but one dataset (MM); and (4) the most general
class CICP achieves the best accuracies among all four classes of PLP-trees across all datasets.

The size of a PLP-tree is measured by the total number of preferences in the CPTs in the
tree. Clearly, for UIUP, CIUP and CICP trees, it is also the number of non-leaf nodes in the
tree. For UICP trees it is the total number of rows in all conditional preference tables in the
tree. It is desirable to learn trees that are accurate but small. Trees of a small size provide
qualitative insights into the structure and properties of the preference order of a user.

321

Learning Partial Lexicographic Preference Trees and Forests Liu and Truszczynski

Table 4: Accuracy percentages on the testing data (30% of E�) for all four classes of PLP-trees,
using models learned by the greedy algorithm from the learning data (the other 70% of E�)

Dataset UIUP UICP1 CIUPb CIUPd CICP
BCW 90.7 91.4 91.0 90.7 91.4
CE 85.8 86.0 85.8 85.9 86.0
CA 91.4 91.7 91.6 92.0 92.2
GC 74.3 74.6 74.3 74.5 75.7
IN 87.1 86.9 87.2 88.5 90.4
MM 88.2 89.5 87.3 86.9 90.0
MS 71.6 74.2 77.1 75.6 76.6
NS 92.9 93.0 93.0 93.0 93.0
SH 93.4 94.9 95.4 94.8 95.7
TTT 73.9 74.5 74.4 75.4 76.2
VH 79.2 80.4 80.3 80.0 81.2
WN 95.5 97.8 97.8 97.5 97.8

Table 5: Maximum sizes of trees for all the
classes and the training sample sizes for all
datasets

Dataset UIUP UICP1 CI |E�train|
BCW 9 33 87,381 6,306
CE 6 21 853 477,904
CA 10 37 91,477 46,255
GC 10 37 349,525 120,657
IN 10 19 1,023 2,430
MM 5 17 341 554
MS 10 37 91,477 5,913
NS 8 29 7,765 383,644
SH 10 19 1,023 2,237
TTT 9 25 9,841 145,482
VH 10 37 349,525 53,699
WN 10 37 349,525 7,225

Table 6: Average sizes of trees learned by the
greedy algorithm from the training data (70%
of E�)

Dataset UIUP UICP1 CIUPb CIUPd CICP
BCW 6.7 21.8 19.8 28.0 25.7
CE 6.0 17.0 73.2 108.9 109.5
CA 9.0 24.7 31.3 78.6 81.1
GC 9.7 36.0 49.8 210.3 190.0
IN 9.6 17.2 19.8 31.5 30.6
MM 4.5 14.7 8.3 10.8 10.0
MS 7.6 20.7 15.7 22.7 16.3
NS 8.0 25.7 56.2 121.0 116.9
SH 8.4 13.7 13.0 18.4 19.0
TTT 8.0 21.8 36.8 126.8 115.2
VH 9.0 32.7 33.9 101.3 105.4
WN 5.1 13.3 14.2 16.9 14.6

The size of a PLP-tree learned by the greedy algorithm is bounded by the number of training
examples. On the other hand, it never exceeds the size of the largest possible tree for a domain
it models. These maxima are shown for each dataset in Table 5. The maximum for CI trees is
the common maximum for CIUPb, CIUPd and CICP trees. The last column in the table shows
the size of the training example set used (70% of all examples).

Table 6 shows average size of trees learned by our greedy algorithm (for each dataset and
for each class of trees considered). The results indicate that the learned trees have indeed
relatively small sizes when compared to the upper bounds implied by Table 5. The difference
is drastic for CIUPb, CIUPd and CICP trees, where trees we learn have sizes that are small
fractions of the maximum possible size they potentially might have. For UIUP trees and UICP1

trees, the difference is smaller (these trees, because of their structure, are very small to start
with), yet even there is some cases the learned trees have sizes below 80% of the maximum size
and occasionally are much smaller (for instance for the WN dataset). These small-size trees
can provide explicit insights into the importance the user assigns to attributes when deciding
between outcomes, and into how her preferences of attributes depend on preferences on the
more important ones.

We also observe that the sizes of learned CIUPb trees are always smaller than the sizes of
the learned CI trees of the other two types. In some cases (datasets GC, NS, TTT, VH), they
are significantly smaller. Given that the accuracies of learned CIUPb and CIUPd trees are very

322

Learning Partial Lexicographic Preference Trees and Forests Liu and Truszczynski

close to each other, and the accuracies of the learned CIUPb and CICP trees differ by more
than 2 percentage points in only one case (GC), the results suggests that CIUPb trees provide
a particularly attractive preference model. The results are well aligned with the intuition that
when using CIUP trees, agents build them level by level in a breadth-first fashion.

Another important property of greedy algorithms is that they work fast even on large
training sets. Our timing experiments show that they scale up linearly with the size of the
training set. In contrast, the best agreement method scales up exponentially and times out
(with the timeout set to 120 seconds) even on small training sets with 250 elements.

Closing this section, we provide a brief comparison between PLP-trees and decision trees,
a commonly-used classification model in machine learning. Decision trees can be used as clas-
sifiers that, given two outcomes, can tell if an outcome is better or worse than another. Our
experimental results show that decision trees are generally better on predicting preferences be-
tween outcomes than PLP-trees are, although the difference rarely exceeds 3 percentage points
on our data sets. However, PLP-trees offer not only a quick way to determine dominance (the
order between two outcomes) but also insights into the structure of the reasoning process of the
decision maker. They point to importance of attributes and conditional dependencies between
them, and explicitly identify optimal outcomes. This information is hard to glean out of the
decision-tree model for the dominance relation.

3 Partial Lexicographic Preference Forests
As we see from Table 4, our approximation method achieves high accuracy (above 85%) on
most of the datasets for all four types of PLP-trees. However, on some datasets such as MS,
PLP-trees that we learn have accuracy below 80% across all classes of trees. In an effort to
improve on this, we introduce the notion of a PLP-forest, that is, a collection of PLP-trees. Let
F = {T1, . . . , Tn} be a PLP-forest. We say that F is a C PLP-forest, where C is one of the four
classes UIUP, UICP1, CIUP and CICP, if F consists exclusively of C PLP-trees.

3.1 Aggregating PLP-Trees in a PLP-Forest
We use the pairwise majority rule (PMR) to aggregate orders defined by trees in a forest. The
choice of PMR as the aggregation rule is motivated by three considerations. First, plurality was
used in the related work on random forest learning [4] that motivated and influenced our ideas
behind PLP forests and PLP forest learning. Second, the task we have at hand is to determine
the preferences between outcomes, so PMR is well aligned with this task (the outcome that
“wins” on more orders “wins” overall). Finally, the PMR is intuitive and easy to implement.

Let us denote by NF (o1, o2) = |{T ∈ F : o1 �T o2}| the number of trees in the forests
where the outcome o1 is preferred to the outcome o2. Given a forest F , and two outcomes
o1 and o2, we say that o1 �PMR

F o2 iff NF (o1, o2) > NF (o2, o1), and that o1 ≈PMR
F o2 iff

NF (o1, o2) = NF (o2, o1).
In some cases, PMR may lead to the so-called Condorcet’s Paradox, where the strict �PMR

F

relation contains a cycle. It is not the case for our datasets, which we created in such a way
that the Condorcet’s Paradox is prevented from happening.

3.2 Experimentation
First, we show results for UIUP PLP-forests using the best-agreement learning and the greedy
heuristics. In each experiment, we randomly partitioned a dataset into training set (70%)
and testing set (30%). We used the training set to learn a forest of 5000 trees, where each
tree is learned from 50 examples selected with replacement and uniformly at random from
the training set. We repeated that process 20 times (learned 20 forests), and computed their

323

Learning Partial Lexicographic Preference Trees and Forests Liu and Truszczynski

Table 7: Accuracy percentages on the testing data (30% of E�) for UIUP trees and forests of
5000 UIUP trees, using the greedy and the best-agreement algorithms from the learning data
(the other 70% of E�)

Dataset G+Tree G+Forest BA+Forest
BCW 90.7 93.4 95.1
CE 85.8 91.9 89.2
CA 91.4 91.5 93.1
GC 74.3 75.4 77.9
IN 87.1 83.0 92.5
MM 88.2 89.1 90.8
MS 71.6 78.8 90.2
NS 92.9 93.2 94.0
SH 93.4 93.7 94.9
TTT 73.9 75.1 77.2
VH 79.2 82.7 81.9
WN 95.5 95.8 96.9

Table 8: Accuracy percentages on the testing data (30% of E�) for all four classes of PLP-forests
of 5000 trees, using the greedy algorithm from the learning data (the other 70% of E�)

Dataset UIUP UICP1 CIUPb CIUPd CICP
BCW 93.4 94.1 93.7 94.1 94.0
CE 91.9 88.3 91.4 89.7 91.4
CA 91.5 91.6 92.8 92.9 93.0
GC 75.4 73.8 76.1 76.1 76.2
IN 83.0 87.9 89.3 89.4 89.5
MM 89.1 90.1 90.0 90.1 90.2
MS 78.8 87.2 92.2 92.2 91.8
NS 93.2 89.9 93.3 93.4 93.4
SH 93.7 93.5 93.6 93.6 93.7
TTT 75.1 75.2 76.6 76.5 76.9
VH 82.7 81.8 83.2 83.2 83.4
WN 95.8 95.4 97.5 97.8 97.8

accuracies (using the testing set), as well as the average accuracies over all 20 forests learned.
The averages are given in Table 7 (we write BA and G to indicate the methods used).

We see that G+Forest outperforms G+Tree on all but one dataset (i.e., IN). This indicates
the gain of using a forest of diverse trees against a single tree for UIUP. Similarly, we observe
that BA+Forest outperforms G+Forest on all datasets but one (CE). This points to another
advantage of PLP forest learning: they achieve good accuracy even when individual trees are
learned from small example sets and so, the best-agreement learning becomes practical.

Second, we show results of PLP-forest learning with the greedy heuristics and the five types
of PLP-forests (under the same setting as before). The results are shown in Table 8. Comparing
with Table 4, we see that UICP1 trees do not lend themselves well to the use in forests, the
accuracies for individual UICP1 trees are higher than for forests of UICP1 trees for five out
of 12 datasets. However, for all other types of trees, the idea of learning forests of such trees
is very effective. We get improvements in the accuracy on all datasets but one for UIUP and
CIUPd trees, and in all but two datasets for CIUPb and CICP trees. In the case of the dataset
MS, the improvements provided by forest learning are particularly significant.

We also studied how the accuracy of PLP-forests changes with the number of their PLP-
trees. In Figure 5, we show the results for UIUP and CICP PLP-forests for selected datasets.

324

Learning Partial Lexicographic Preference Trees and Forests Liu and Truszczynski

Forest size
1000 2000 3000 4000 5000

A
c
c
u
ra

c
y
 o

n
 T

e
s
ti
n
g
%

0.5

0.6

0.7

0.8

0.9

1

UIUP PLP-Trees

UIUP PLP-Forests

CICP PLP-Trees

CICP PLP-Forests

(a) CE

Forest size
1000 2000 3000 4000 5000

A
c
c
u
ra

c
y
 o

n
 T

e
s
ti
n
g
%

0.5

0.6

0.7

0.8

0.9

1

UIUP PLP-Trees

UIUP PLP-Forests

CICP PLP-Trees

CICP PLP-Forests

(b) IN

Forest size
1000 2000 3000 4000 5000

A
c
c
u
ra

c
y
 o

n
 T

e
s
ti
n
g
%

0.5

0.6

0.7

0.8

0.9

1

UIUP PLP-Trees

UIUP PLP-Forests

CICP PLP-Trees

CICP PLP-Forests

(c) MS

Forest size
1000 2000 3000 4000 5000

A
c
c
u
ra

c
y
 o

n
 T

e
s
ti
n
g
%

0.5

0.6

0.7

0.8

0.9

1

UIUP PLP-Trees

UIUP PLP-Forests

CICP PLP-Trees

CICP PLP-Forests

(d) WN

Figure 5: Learning PLP-forests

Examining Figure 5, we note that with even smaller forests, consisting of 2000 forests, the
accuracies are already very close to those we observe for forests consisting of 5000 trees. That
suggests that much larger forests would not offer any additional boost in the accuracy. The
figure also shows that the number of trees needed in a forest in order to offer a better accuracy
than that of an individual tree varies (for only one case with dataset IN and class UIUP, we do
not see forests of trees surpass individual trees in accuracy).

4 Conclusion and Future Work
We considered learning partial lexicographic preference trees, or PLP-trees. We showed that
PLP-trees are expressive preference models that can be used to accurately model preferences
arising in practical situations, and that high-accuracy PLP-trees can be effectively computed.
We also proposed and studied a variant of the model based on the concept of a PLP-forest,
a collection of PLP-trees, where the preference order specified by a PLP-forest is obtained by
aggregating the orders of its PLP-trees. We proposed and implemented the best-agreement and
greedy algorithms to learn PLP-trees and PLP-forests. To support experimentation, we used
datasets that we adapted to the preference learning setting from existing classification datasets.

Our results demonstrated the potential of both approaches. For learning single trees, our
results show the effectiveness of the greedy heuristics, and identify CIUPb trees as offering both
high accuracy and small tree sizes. Learning PLP-forests improves accuracy and yields useful
models even when individual trees are learned from small example sets. That allows us to use
the best-agreement method for learning PLP forests, the method inapplicable when example
sets are large.

In the future, we will study partially collapsible PLP-trees where some subtrees are col-
lapsible while the whole tree is not. We will explore expanding our preference learning library
with real-world datasets obtained by experiments involving human subjects. Finally, we plan
to implement and experiment with other aggregators for PLP-forests, and compare with our

325

Learning Partial Lexicographic Preference Trees and Forests Liu and Truszczynski

results using the desirable and intuitive majority rule.

Acknowledgments
This work was partially supported by the NSF grant IIS-1618783.

References
[1] Richard Booth, Yann Chevaleyre, Jérôme Lang, Jérôme Mengin, and Chattrakul Sombattheera.

Learning conditionally lexicographic preference relations. In ECAI, pages 269–274, 2010.
[2] Craig Boutilier, Ronen I Brafman, Carmel Domshlak, Holger H Hoos, and David Poole. Cp-nets: a

tool for representing and reasoning with conditional ceteris paribus preference statements. Journal
of Artificial Intelligence Research, 21(1):135–191, 2004.

[3] Michael Bräuning and Eyke Hüllermeier. Learning conditional lexicographic preference trees.
Preference learning: problems and applications in AI, page 11, 2012.

[4] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[5] Yannis Dimopoulos, Loizos Michael, and Fani Athienitou. Ceteris paribus preference elicitation

with predictive guarantees. In IJCAI, volume 9, pages 1–6. Citeseer, 2009.
[6] Niall M Fraser. Ordinal preference representations. Theory and Decision, 36(1):45–67, 1994.
[7] Johannes Fürnkranz and Eyke Hüllermeier. Preference learning. Springer, 2011.
[8] Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten Schaub, and

Marius Schneider. Potassco: The potsdam answer set solving collection. AI Communications,
24(2):107–124, 2011.

[9] Joshua T Guerin, Thomas E Allen, and Judy Goldsmith. Learning cp-net preferences online from
user queries. In Algorithmic Decision Theory, pages 208–220. Springer, 2013.

[10] Frédéric Koriche and Bruno Zanuttini. Learning conditional preference networks. Artificial Intel-
ligence, 174(11):685–703, 2010.

[11] Jérôme Lang and Jérôme Mengin. The complexity of learning separable ceteris paribus preferences.
In IJCAI, pages 848–853, 2009.

[12] Xudong Liu and Miroslaw Truszczynski. Learning partial lexicographic preference trees over com-
binatorial domains. In Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI),
pages 1539–1545. AAAI Press, 2015.

[13] Xudong Liu and Miroslaw Truszczynski. Reasoning with preference trees over combinatorial do-
mains. In Algorithmic Decision Theory, pages 19–34. Springer, 2015.

[14] Victor W Marek and Miroslaw Truszczyński. Stable models and an alternative logic programming
paradigm. In The Logic Programming Paradigm, pages 375–398. Springer, 1999.

[15] Ilkka Niemelä. Logic programs with stable model semantics as a constraint programming paradigm.
Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273, 1999.

[16] Michael Schmitt and Laura Martignon. On the complexity of learning lexicographic strategies.
The Journal of Machine Learning Research, 7:55–83, 2006.

[17] Nic Wilson. Efficient inference for expressive comparative preference languages. In IJCAI 2009,
Proceedings of the International Joint Conference on Artificial Intelligence, Pasadena, California,
Usa, July, pages 961–966, 2009.

326

Learning Partial Lexicographic Preference Trees and Forests Liu and Truszczynski

Appendix
Greedy learning algorithm

Algorithm 1: The greedy algorithm that learns a PLP-tree
Input: C: a configuration of items (E�,A, n,∆), where E� is the set of strict example

to be decided, A the set of available attributes, n an unlabeled node to consider
next, and ∆ a Boolean value indicating the type of PLP-trees (UI or CI) to be
learned, and T = n: an unlabeled node for which a PLP-tree is to be learned.

Output: A PLP-tree T over A.
1 (E�,A, n,∆)← Pop an item from C;
2 if E� = ∅ then
3 Label n as a leaf;
4 if C is empty then
5 return;
6 end
7 else
8 (Xl, CPT (Xl))← Pick Xl ∈ A and CPT (Xl) that correctly decides the maximum

number of examples in E�;
9 Label n with tuple (Xl, CPT (Xl));

10 E� ← E�\{e ∈ E� : αe(Xl) 6= βe(Xl)};
11 A ← A\{Xl};
12 if ∆ = true then
13 Create an edge u and an unlabeled node n′ such that u = 〈n, n′〉;
14 Push item (E�,A, n′,∆) onto C;
15 else
16 for i← 1 to |Dl| do
17 Create an edge ui and an unlabeled node ni such that ui = 〈n, ni〉;
18 E�i ← {e ∈ E� : αe(Xl) = βe(Xl) = xl,i};
19 Push item (E�i ,A, ni,∆) onto C;
20 end
21 end
22 end
23 greedy(C, T);

Preference Library — Datasets Used in Experimentation
We now describe the datasets we used in our study of learning algorithms we present later. These
datasets were generated from publicly available classification datasets developed by the machine
learning community. When constructing the datasets, we limited the number of attributes in
outcomes to ten and the sizes of attribute domains to four.

Classification datasets associate with each outcome α a label l(α). If there is a total
(pre)order relation on the labels, say �, we can use this relation to produce preference ex-
amples out of classification examples. Namely, for each pair of outcomes α and β from the
classification dataset, if l(α) � l(β), we take (α, β,�) as a strict example, and if l(α) = l(β), we
take (α, β,≈) as an equivalence example.4 Throughout the paper, we write p for the number

4Clearly, our preference datasets do not contain incomparability examples. This is not a limitation in our
work as the preference models we learn represent total preorders.

327

Learning Partial Lexicographic Preference Trees and Forests Liu and Truszczynski

of attributes in a dataset, X for the set of outcomes, E for the set of examples, and E� and E≈
for the sets of strict and equivalence examples, respectively.

At present, our preference library consists of twelve datasets obtained from the classification
datasets listed in Table 1. In ten of them there is a natural order on the labels. For the other
two of them namely, VH and WN, there is no domain-specific natural order on the labels.
In these two cases, to generate examples we fixed a preference order on the labels arbitrarily
(see below). We discuss three preference datasets (CE, VH and WN) in detail and provide a
summary description of the remaining ones in Table 2, where we use | · | to denote the size of a
set.
BCW The BCW dataset has 270 outcomes over 9 attributes. To generate equivalent and
strict examples for the dataset, we assume that outcomes labeled by “benign" are better than
those by “malignant." For equivalent examples, we have that outcomes labeled by “benign" are
equivalent to one another, so are those labeled by “malignant."
CE he CE dataset has 1728 outcomes over 6 attributes. o generate equivalent and strict
examples for the dataset, we assume that outcomes labeled by “vgood" are better than those
by “good," which are better than those by “acc," which are preferred to those by “unacc."
CA The CA dataset has 520 outcomes over 10 attributes. To generate equivalent and strict
examples for the dataset, we assume that outcomes labeled by “+" (positive) are better than
those by “-" (negative).
GC The GC dataset has 914 outcomes over 10 attributes. To generate equivalent and strict
examples for the dataset, we assume that outcomes labeled by “1" (good) are better than those
by “2" (bad).
IN The IN dataset has 118 outcomes over 10 attributes. To generate equivalent and strict
examples for the dataset, those by “b" (bad).
MM The MM dataset has 118 outcomes over 10 attributes. To generate equivalent and strict
examples for the dataset, we assume that outcomes labeled by “0" (benighn) are better than
those by “1" (malignant).
MS The MS dataset has 184 outcomes over 10 attributes. To generate equivalent and strict
examples for the dataset, we assume that outcomes labeled by “e" (edible) are better than those
by “p" (poisonous).
NS The NS dataset has 184 outcomes over 10 attributes. To generate equivalent and strict
examples for the dataset, we assume that outcomes labeled by “spec_prior" are better than
those by “priority," which are better than those by “very_recom," which are preferred to those
by “recommend," which again are better than those by “not_recom."
SH The SH dataset has 115 outcomes over 10 attributes. To generate equivalent and strict
examples for the dataset, we assume that outcomes labeled by “0" (positive) are better than
those by “1" (negative).
TTT The TTT dataset has 958 outcomes over 9 attributes. To generate equivalent and strict
examples for the dataset, we assume that outcomes labeled by “positive" are better than those
by “negative".
VH The VH dataset has 455 outcomes over 10 attributes. To generate equivalent and strict
examples for the dataset, we assume that outcomes labeled by “bus" are better than those by
“opel," which are better than those by “saab," which are preferred to those by “van."
WN The WN dataset has 177 outcomes over 10 attributes. To generate equivalent and strict
examples for the dataset, we assume that outcomes labeled by “1" are better than those by “2,"
which are better than those by “3."

328

	Introduction
	Partial Lexicographic Preference Trees
	Algorithms learning PLP-trees
	Experiments

	Partial Lexicographic Preference Forests
	Aggregating PLP-Trees in a PLP-Forest
	Experimentation

	Conclusion and Future Work

