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Abstract

Constraint Programming is a powerful and expressive framework for modelling and
solving combinatorial problems. It is nevertheless not always easy to use, which has led
to the development of high-level specification languages. We show that Constraint Logic
Programming can be used as a meta-language to describe itself more compactly at a
higher level of abstraction. This can produce problem descriptions of comparable size
to those in existing specification languages, via techniques similar to those used in data
compression. An advantage over existing specification languages is that, for a problem
whose specification requires the solution of an auxiliary problem, a single specification can
unify the two problems. Moreover, using a symbolic representation of domain values leads
to a natural way of modelling channelling constraints.

1 Introduction

Constraint modeling is more of an art than a science, and considerable research has been
devoted to making it easier for Constraint Programming (CP) users. A popular approach is to
describe the problem in an abstract specification language, then transform the description into
a concrete constraint model. Ideally a specification should be a concise but exact description
of the problem, preferably in a formal language that is usually mathematical in nature. CP
specification languages include OPL [21], Essence [11] and Zinc [14], while AMPL [10] is used
to specify mathematical programs.

We propose a new approach to constraint problem specification: using Constraint Logic
Programming (CLP) as a meta-language to describe CLP models. This approach has several
advantages: (i) the user need know only one language (CLP); (ii) describing CLP variables and
constraints as solutions to other Constraint Satisfaction Problems (CSPs) is very expressive,
and avoids the need for separate software to generate complex specifications; (iii) domain values
can be represented symbolically instead of numerically, making it easier to model channelling
constraints; (iv) because CLP is a Turing-complete programming language further extensions
are in principle unnecessary (though we find it useful to add a small number of features).

When writing specifications in this way, we can exploit any observed patterns in the model to
make the specification more compact. Thus in our approach writing a short, clear specification
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requires the same kind of thinking as that used in data compression. G. Chaitin, one of the
founders of Algorithmic Information Theory (AIT), argues that a scientific or mathematical
theory is a computer program for calculating the facts, and the smaller the program, the better .
This view has been summarised by the phrase understanding is compression [4]. In this paper we
take the position that specification is compression. Like scientific theories, constraint problem
specifications should be concise and easily understood. We call our specification language
Kolmogorov because of this connection.

In Section 2 we introduce our approach using a trivial example. In Section 3 we demonstrate
its usefulness on several examples from the CP literature. Section 4 discusses other approaches
to problem specification. Section 5 concludes the paper.

2 Specifications as compressed CLP models

Kolmogorov uses CLP in two ways: as a (higher-level) specification language and as a (lower-
level) constraint modeling language. In its high-level role it represents low-level concepts (vari-
ables, constraints and constants) as Prolog ground terms, and a few useful predicates are
provided to aid description.

The specific CLP language we use is Eclipse [1] and we assume familiarity with basic CLP
concepts. However, we now provide some notes for readers unfamiliar with Eclipse notation. ::
is used to declare variable domains, for example [X,Y]::1..3 means that variables X and Y have
finite domain {1, 2, 3}. Equalities, disequalities and inequalities between finite domain variables
are expressed by operators such as #=, #\= and #<. Functions of lists such as sum and max can
be used in constraints. A constraint expression is true or false, represented by values 1 and
0 respectively, and these values can be used in reified expressions such as (X#=5)+(Y#<3)#<2,
which means that at most one of the constraints (X#=5) and (Y#<3) must be satisfied. A
declaration intset(V,A,B) means that variable V has a set domain which is all the subsets
of integers between A and B. For set variables # denotes cardinality and /\ intersection. The
predicate indomain nondeterministically assigns a domain value to its argument variable. The
predicate findall collects solutions via backtracking, for example if variable I has domain
[1,2,3] then findall(f(I),(indomain(I),I#\=2),L) instantiates L to the list [f(1),f(3)].

As an introductory example we use the well-known N-queens problem, which uses a gener-
alised chess board with a grid of N × N squares. The problem is to place N queens on it in
such a way that no queen attacks any other. A queen attacks another if it is on the same row,
column or diagonal (in which case both attack each other). A classic paper [16] presented 9
CSP models called Q1–Q9 and we use the popular Q1. For each row i of the board define a
variable vi with domain {1, . . . , N}. An assignment vi = j means that a queen is placed at row
i column j. Because a variable can only take one value, this model already implies that no row
can contain two queens. We need constraints to ensure that no column contains two queens:
vi 6= vj for 1 ≤ i < j ≤ N . Similarly for diagonals: vi − vj 6= i − j for 1 ≤ i < j 6= N . An
Eclipse model for this problem with N = 3 is shown in Figure 1. This is probably the simplest
and clearest model, though it is not general-purpose because the number of queens is fixed to
3.

Now consider a naive Kolmogorov specification of this model, shown in Figure 2. It
describes the problem variables (via kvar), and the subgoals describing variable declarations
and constraints (via kgoal), with the CLP variables V1, V2 and V3 replaced by structured
ground terms v(1), v(2) and v(3). (We do not model the head q3(V1,V2,V3) of the CLP
clause.) The [] argument is used for passing parameters such as the size of the chess board
and will be used below. The meaning of this model is very simple. The terms representing the
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q3(V1,V2,V3) :-

[V1,V2,V3]::1..3,

V1#\=V2, V1#\=V3, V2#\=V3,

V2-V1#\=1, V3-V1#\=2, V3-V2#\=1, V1-V2#\=1, V1-V3#\=2, V2-V3#\=1.

Figure 1: A CLP model for 3-queens

kvar(v(1),[]).

kvar(v(2),[]).

kvar(v(3),[]).

kgoal([v(1),v(2),v(3)]::1..3,[]).

kgoal(v(1)#\=v(2),[]). kgoal(v(1)#\=v(3),[]). kgoal(v(2)#\=v(3),[]).

kgoal(v(2)-v(1)#\=1,[]). kgoal(v(1)-v(2)#\=1,[]). kgoal(v(3)-v(1)#\=2,[]).

kgoal(v(1)-v(3)#\=2,[]). kgoal(v(3)-v(2)#\=1,[]). kgoal(v(2)-v(3)#\=1,[]).

Figure 2: Naive Kolmogorov specification for 3-queens

variables of the 3-queens CLP model are the solutions of the goal

?- kvar(V,[]).

These solutions are:

V = v(1)

V = v(2)

V = v(3)

Similarly, the constraints and variable declarations of the model are the solutions of the goal

?- kgoal(C,[]).

which are:

C = [v(1),v(2),v(3)]::1..3

C = (v(1)#\=v(2))

...

C = (v(2)-v(3)#\=1)

To create a CLP model that can be passed to a solver, the kgoal solutions are collected into a
list L via backtracking, and variable terms such as v(2) are replaced by CLP variable names
such as V2. To do this, our compiler traverses the terms in L and replaces each kvar solution
term by a CLP variable, using a hash table to keep track of the names. The result is exactly
the model in Figure 1 without the clause head.

The above example illustrates the Kolmogorov framework, but so far we have not demon-
strated any advantage because the specification is longer and less clear than the CLP model
itself. We now compress the description by looking for patterns. Observe that each variable
v(I) occurs in a #\= constraint with each variable v(J) where I<J, and that each variable oc-
curs in another #\= constraint with each variable v(J) where I 6=J. We can exploit this simple
pattern to produce the more compact specification in Figure 3. The kvar and kgoal solutions
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kvar(v(I),[]) :- csp(I::1..3).

kgoal(L::1..3,[]) :- findall(V,kvar(v(I),[]),L).

kgoal(v(I)#\=v(J),[]) :- kvar(v(I),3), kvar(v(J),3), I<J.

kgoal(v(J)-v(I)#\=D,[]) :- kvar(v(I),3), kvar(v(J),3), I\=J, D is J=I.

Figure 3: Compressed Kolmogorov specification for 3-queens

kvar(v(I),[N]) :- csp(I::1..N).

kgoal(L::1..N,[N]) :- findall(V,kvar(v(I),[N]),L).

kgoal(v(I)#\=v(J),[N]) :- kvar(v(I),N), kvar(v(J),N), I<J.

kgoal(v(J)-v(I)#\=D,[N]) :- kvar(v(I),N), kvar(v(J),N), I\=J, D is J-I.

Figure 4: Compressed Kolmogorov specification for N-queens

of this specification are the same as those of the previous one, and exactly the same CLP model
will be generated.

Figure 3 uses a predicate csp which we provide as part of Kolmogorov. This predicate
posts the constraints in its argument then nondeterministically solves the corresponding CSP
by nondeterministically assigning values to its variables. Although any CLP code can be used
in the body of a kvar or kgoal clause, often it will be a CSP so this predicate makes it easier
to write specifications. We shall show that specifying variables and constraints as the solutions
to kvar and kgoal CSP solutions makes Kolmogorov very expressive. We refer to these as
auxiliary CSPs.

As a final step the compact 3-queens specification can be generalised to the N-queens prob-
lem, as shown in Figure 4 where the board size N is specified in the second argument of kvar
and kgoal. The specification is now close to a mathematical description of the problem. This
trivial example illustrates our approach: we detect and exploit patterns in the model in order to
obtain a more compact representation, which is also more amenable to generalisation. However,
in practice we need not start with a model and transform it, as in this example: familiarity
with Kolmogorov means that we can write a compact specification directly.

Exploiting patterns to obtain a more compact representation is precisely what is done in data
compression. For example a common technique in facsimile (fax) encoding is run-length coding .
A fax can be thought of as a 2-dimensional array of bits with 1 denoting black and 0 white.
An obvious representation is simply to list the bits by row and column, under the assumption
that there is an agreed number of bits per row. However, this is inefficient because a typical fax
has a great deal of white space (in text and line drawings) and often quite large black areas (in
diagrams). A simple but far more efficient representation uses run-length coding: a sequence
such as 10010000000011100 is broken down into runs 1, 00, 1, 00000000, 111 and 00 of identical
values. The sequence can then be encoded as a series of integers giving the lengths of these runs:
1, 2, 1, 8, 3 and 2. This is one of the simplest data compression techniques (see for example
[17] for a survey) but it illustrates the type of reasoning used: detect a pattern in the data
(such as long runs of identical symbols) and exploit it to obtain a shorter representation. This
is exactly what we did in the N-queens example, so we consider Kolmogorov specifications
to be compressed constraint models.

In most of our examples we shall exploit patterns among constraints by expressing them
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kvar(u(I),[B,K,N,SL,VL]) :- csp(I::1..N).

kgoal((UL::0..1,sum(S1)#=<B,sum(S2)#>=K),[B,K,N,SL,VL]) :-

findall(u(I),kvar(u(I),[B,K,N,SL,VL]),UL),

findall(U*S,csp((element(Q,UL,U),element(Q,SL,S))),S1),

findall(U*V,csp((element(Q,UL,U),element(Q,VL,V))),S2).

Figure 5: Kolmogorov specification of the knapsack problem.

as solutions to auxiliary CSPs, which naturally capture most of the patterns in our problems.
However, for some specifications we might require a more algorithmic style of compression, ex-
ploiting the fact that CLP is a programming language as well as a constraint solver. In principle
any pattern in a constraint model can be exploited by a Kolmogorov specification, because
CLP is a Turing complete language so it can express any form of algorithmic compression.

In this paper we shall gloss over some details that in practice also require handling: an
objective function (if any), the search strategy, library declarations, and which variables form
the part of the solution we are interested in (usually declared in a goal, such as q3(V1,V2,V3)
in the model of Section 1). We shall focus on specifying constraint satisfaction problems.

3 Case studies

We now present Kolmogorov specifications for several problems from the CP literature, in-
troducing additional features and pointing out its advantages.

3.1 Four standard problems

An Essence paper [11] presented specifications for four problems (the knapsack problem,
Golomb rulers, SONET and the social golfer) and we start by modeling the same problems. As
we have not modeled objective functions we consider them as decision problems, but it would be
simple to extend Kolmogorov to optimisation problems. We do not explain these problems
as they are standard CP examples, and our aim here is simply to show that Kolmogorov can
model them as easily as other specification languages (but see Section A for a description of
the social golfer problem).

The Knapsack problem is specified in Figure 5. It has parameters B (knapsack capacity)
and K (minimum total value), a list of item sizes SL, a list of item values VL, and a desired
set cardinality N. The Golomb ruler problem is specified in Figure 6 using a CP model with
auxiliary variables from [20], with N ticks and a ruler of length M. The SONET problem is
specified in Figure 7. This is a decision version of the unlimited traffic capacity model in [18]
with an upper bound S on the objective. The social golfer problem is specified in Figure 8 and
is based on the model of [8, 12].

3.2 Cutting stock problem

For some problems, before we can generate a specification we must first solve an auxiliary CSP
in a preprocessing phase. In Kolmogorov the auxiliary CSP can be part of the model, as we
shall illustrate using the cutting stock problem. This example is taken from H. Kjellerstrand’s
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kvar(t(I),[N,M]) :- csp(I::1..N).

kvar(d(I,J),[N,M]) :- kvar(t(I),[N,M]), kvar(t(J),[N,M]), I<J.

kgoal(t(I)::0..M,[N,M]) :- kvar(t(I),[N,M]).

kgoal(d(I,J)::1..M,[N,M]) :- kvar(d(I,J),[N,M]).

kgoal(d(I,J)#=t(J)-t(I),[N,M]) :- kvar(d(I,J),[N,M]).

kgoal(ordered(TL),[N,M]) :- findall(t(I),kvar(t(I),[N,M]),TL).

kgoal(alldifferent(DL),[N,M]) :- findall(d(I,J),kvar(d(I,J),[N,M]),DL).

Figure 6: Kolmogorov specification of the Golomb ruler problem.

kvar(n(I),[N,M,S,R]) :- csp(I::1..N).

kvar(r(K),[N,M,S,R]) :- csp(K::1..M).

kvar(x(I,K),[N,M,S,R]) :- csp((I::1..N,K::1..M)).

kgoal(intset(n(I),1,M),[N,M,S,R]) :- kvar(n(I),[N,M,S,R]).

kgoal((intset(r(K),1,N),#(r(K),Q),Q#=<R),[N,M,S,R]) :- kvar(r(K),[N,M,S,R]).

kgoal(x(I,J)::0..1,[N,M,S,R]) :- kvar(x(I,J),[N,M,S,R]).

kgoal(sum(XL)#=<S,[N,M,S,R]) :- findall(x(I,J),kvar(x(I,J),[N,M,S,R]),XL).

kgoal(x(I,K)#=((I in r(K))*(K in n(I))),[N,M,S,R]) :-

kvar(x(I,K),[N,M,S,R]).

kgoal((#(n(I) /\ n(J),Q),Q#>=1),[N,M,S,R]) :-

kvar(n(I),[N,M,S,R]), kvar(n(J),[N,M,S,R]), I<J.

Figure 7: Kolmogorov specification of the SONET problem.

MiniZinc page.1 A company cuts boards of size 17 into pieces of sizes 3, 5 and 9, and they must
cut enough pieces to satisfy demands 25, 20 and 15 respectively. There are six feasible cutting
patterns for a board:

size 3 5 4 2 2 1 0
size 5 0 1 2 0 1 3
size 9 0 0 0 1 1 0

wasteage 2 0 1 2 0 2

kvar(g(I,J),[W,G,S]) :- csp((I::1..W,J::1..G)).

kgoal(intset(g(I,J),1,P),[W,G,S]) :-

kvar(g(I,J),[W,G,S]), csp((P#=G*S,#(g(I,J),S))).

kgoal((g(I,J) disjoint g(I,J1)),[W,G,S]) :-

kvar(g(I,J),[W,G,S]), kvar(g(I,J1),[W,G,S]), J<J1.

kgoal((#(g(I,J) /\ g(I1,J1),N),N#=<1),[W,G,S]) :-

kvar(g(I,J),[W,G,S]), kvar(g(I,J1),[W,G,S]), I<I1.

Figure 8: Kolmogorov specification of the social golfer problem.

1http://www.hakank.org/minizinc
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kvar(c(P),[B,PL,DL]) :- csp(P::1..6).

kgoal(c(P)::0..B,[B,PL,DL]) :- kvar(c(P),[B,PL,DL]).

kgoal(sum(L)#>=D,[B,PL,DL]) :-

csp((Q::1..3,element(Q,DL,D))),

findall(X*c(I),(element(I,PL,P),element(Q,P,X)),L).

Figure 9: Kolmogorov specification for cutting stock

kvar(c(P),[B,DL]) :- csp(P::1..6).

kgoal(c(P)::0..B,[B,DL]) :- kvar(c(P),[B,DL]).

kgoal(sum(L)#>=D,[B,DL]) :-

csp((Q::1..3,element(Q,DL,D))),

findall([U,V,W],csp(pattern(U,V,W)),PL),

findall(X*c(I),(element(I,PL,P),element(Q,P,X)),L).

pattern(U,V,W) :-

U::0..5, V::0..3, W::0..1, Used#=U*3+V*5+W*9,

Waste#=17-Used, Used#=<17, Waste#<3.

Figure 10: Kolmogorov specification for cutting stock with implicit patterns

where wasteage is the material left after cutting pieces from the board. We must decide how
many boards to cut, and how many times to apply each cutting pattern. We turn this into a
decision problem by fixing the number of boards to B. A Kolmogorov specification is shown
in Figure 9, and to generate a constraint model we call

?- kgoal(C,[B,PL,DL]).

with B set to some integer and

PL = [[5,0,0],[4,1,0],[2,2,0],[2,0,1],[1,1,1],[0,3,0]]

DL = [25,20,15]

The cutting patterns are provided here as a list parameter, and in the MiniZinc specification
as a matrix. As above, we collect all solutions C to kgoal and these form a conjunction of goals
to be solved by the CLP system (after we replace terms such as c(1) by CLP variable names).

In real-world instances the set of feasible cutting patterns is not random, but may be (for
example) a consequence of the design of the cutting machinery, or the need to avoid excess
wasteage. If we can model this machinery it might be possible to derive an auxiliary CSP whose
solutions are the feasible cutting patterns. For example, suppose we wish to allow any cutting
pattern [U,V,W] with wasteage less than 3. We can then make cutting pattern generation part
of the specification by expressing it as a CSP and omit the PL parameter, as in Figure 10.

3.3 Covering arrays

Kolmogorov’s has an additional feature we call symbolic constants, which are helpful for
models involving compound or dual variables [19] and channeling constraints [5]. To illustrate
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this feature we use a published CP model for covering arrays [13]. This is not the naive model
which is the simplest to describe (see [11] for an Essence specification) but does not scale up to
large instances, but the hybrid model designed for scalability, which was used to extend known
results for covering arrays.

The problem is as follows. A covering array CA(t, k, g) of size b is an b× k array consisting
of b vectors of length k with entries from Zg = {0, 1, . . . , g − 1} (g is the size of the alphabet)
such that every one of the gt possible vectors of size t occurs at least once in every possible
selection of t elements from the vectors. The objective is to find the minimum b for which a
CA(t, k, g) of size k exists, and fixing b gives a decision problem.

The obvious way of modeling the problem uses a set of decision variables xi,j ∈ {0, . . . , g−1}
to represent the covering array. In [13] this is referred to as the naive model because it does not
scale well to large instances, because the coverage constraints are hard to express efficiently.
An alternate model instead uses a

(
k
t

)
× b matrix A of integers in Zgt , which is represented by

another set of Boolean variables: for each column c, row j and value y define a variable acjy.
The idea of the a-variables is that a choice of t columns from the k columns in the covering array
is represented by a single integer c ∈ Z(k

t)
, and that the values in these t columns are combined

to give a single integer y ∈ Zgt . The a-variables model this alternative representation of the
covering array. We call the a-variables compound variables and they occur in many constraint
models. However, the alternate model is also inefficient because it requires a large number of
intersection constraints to ensure consistency between a-variables that share x-variables.

The hybrid model combines elements of both representations: the coverage constraints are
expressed on the a-variables, and channeling constraints between the a- and x-variables make
the intersection constraints redundant. Figure 11 shows a Kolmogorov specification for this
model (we omit symmetry breaking constraints for brevity). Instead of indexing the a-variables
by an integer c ∈ Z(k

t)
to describe the choice of columns, we index them by a list of the columns:

aj,i1,...,it . The a-domains are integers, and a simple way of choosing these integers is to post
intentional non-binary channeling constraints

aj,i1,...,it =

t−1∑
i=0

2ixi,j

as mentioned in [13]. However, an extensional method has the advantage of stronger filtering:
post binary constraints to forbid nogoods

〈aj,i1,...,it = c, xiq,j = c′〉

where c is any value corresponding to the assignment xiq,j = c′. A difficulty here is that it is
not trivial to write a mathematical relationship between c and c′ (and this was not explicitly
done in [13]).

To sidestep this problem we can represent the elements of each a-domain by structured
terms: aj,i1,...,it = c(c1, . . . , ct). Now the binary channeling constraints nogoods are simple to
state:

〈aj,i1,...,it = c(c1, . . . , ct), xiq,j = cq〉

for q = 1, . . . , t. Representing domain integers by symbolic constants allows us to specify chan-
neling constraints in a more natural way, without the need for devising complicated relationships
between domains.

These structured terms can be represented via Kolmogorov’s symbolic constants. The
predicate kconst relates integers or other constants with ground structured terms. In Figure
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kvar(x(I,J),[T,K,G,B]) :- csp((I::1..K,J::1..B)).

kvar(a(J,IL),[T,K,G,B]) :-

length(IL,T), csp((J::1..B,IL::1..K,ordered(IL))).

kconst(c(CL),[T,K,G,B]) :- length(CL,T), csp(CL::0..G-1).

kgoal(x(I,J)::0..G-1,[T,K,G,B]) :-

kvar(x(I,J),[T,K,G,B]).

kgoal(a(J,IL)::Dom,[T,K,G,B]) :-

kvar(a(J,IL),[T,K,G,B]), findall(c(CL),kconst(c(CL),[T,K,G,B]),Dom).

kgoal((a(J,IL)#=c(CL))+(x(I,J)#=A)#<2,[T,K,G,B]) :-

kvar(a(J,IL),[T,K,G,B]), kconst(c(CL),[T,K,G,B]),

csp((element(Q,IL,I),element(Q,CL,A))).

kgoal(gcc(BL,YL),[T,K,G,B]) :-

findall(gcc(1,B,c(CL)),kconst(c(CL),[T,K,G,B]),BL),

findall(a(J,IL),kvar(a(J,IL),[T,K,G,B]),YL).

Figure 11: Kolmogorov specification for hybrid CA model

11 kconst declares that any term of the form c(CL), where CL is a list of length T, represents an
integer. It does not matter what value this integer is, as long as each distinct term maps con-
sistently to a unique integer (these integers are automatically generated during Kolmogorov
compilation). So symbolic constants such as c([0,1,2]) are replaced by integers during com-
pilation, and these integers form domains for the a-variables (see the second kgoal clause in
Figure 11). Now we can write the above constraints in a very natural way (see the third kgoal

clause in Figure 11).
An interesting generalisation of covering arrays is Quilting arrays [6] in which we do not

need to cover all patterns, but only those with a specified pattern such as using only two values,
or with all different values. We can easily extend the Kolmogorov specification of Figure 11
to handle Quilting arrays by adding a constraint such as alldifferent(CL) to the kconst

definition. This prevents any compound variable a from taking a value that corresponds to an
invalid pattern of x assignments.

4 Related work

CLP languages themselves were initially promoted as high-level specification languages, until
the need for greater abstraction became apparent. Kolmogorov is perhaps closest in spirit
to NP-Spec [3], which uses Datalog (a simplified form of Prolog without structured terms)
plus some second-order predicates to specify problems. However, NP-Spec and Kolmogorov
specifications look very different, as can be seen by comparing the models for the social golfer
problem in Figures 8 and 15. Answer Set Programming [2] and Business Rules [7] have also
been used as specification languages for CP. A different approach is taken by Essence [11],
Zinc [14], OPL [21], ESRA [9], F and Localizer [15], which use mathematical language to
obtain highly abstract specifications. AMPL [10] and other languages play a similar role for
mathematical programming. Kolmogorov is unlike these languages in that it is a description
of a constraint model, not a description of a problem.

An important feature of some languages (Essence, ESRA, F and Localizer) is quantifi-
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cation over decision variables, rather than merely over ranges of integers [11]. Kolmogorov
does not contain explicit quantifiers, but because it represents variables (also constraints and
symbolic constants) as generic Prolog terms it has similar expressive power: it can enumerate
all variables whose representation matches a given term. This occurs in our specifications when
kvar is called from a kgoal clause.

We claim that Kolmogorov specifications are typically of comparable size to those in
other specification languages. To support this claim, and to show that Kolmogorov is quite
different to existing specification languages, Appendix A reproduces models from [11] for the
social golfer problem in Zinc, ESRA, OPL, NP-Spec and Essence. There is no generally-
agreed way of comparing the relative sizes of specifications in such different languages, but
the Kolmogorov specification (Figure 8) is clearly of a typical size. Whether it is easier or
harder to understand is difficult to establish, and depends partly on whether the reader has
CLP experience, but we note that it uses a known syntax (CLP) without the need for special
symbols or typefaces, or the mathematics of sets and functions.

5 Conclusion

Kolmogorov is a new approach to writing specifications for constraint problems. Instead of
creating a new mathematical language we use CLP as a meta-language to describe CLP models
at a higher level of abstraction. Thus a Kolmogorov specification is a CLP description of a
CLP model, which exploits patterns in the model to make the description clear and compact.

It might be objected that Kolmogorov is not a specification language at all, as our specifi-
cations are written in an existing programming language. But we have shown that for a variety
of problems its specifications are of comparable size to those of other specification languages.
We argue that the purpose of a specification is to describe a problem clearly, precisely and suc-
cinctly, and that Kolmogorov fulfils these criteria. Our argument assumes familiarity with
CLP, which is of course not true of all CP users. However, our approach requires the modeler
to know only one language, whereas most approaches require knowledge of both a CP language
and a very different specification language.

Our use of CLP to specify constraint problems could be criticised on the grounds that CLP
contains non-declarative features (such as negation-as-failure, findall and the cut) whereas
specification languages are typically declarative. We chose to use a full programming language
for reasons of convenience and compactness, but we could have used only declarative features.
Horn clause logic is a subset of CLP that is also Turing complete, and restricting Kolmogorov
to this language would have the advantage of being completely declarative and with a very
simple syntax.
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A Social golfer problem in other languages

The problem is as follows. In a golf club there are G groups each with S golfers who play every
week, and we must find a schedule of W weeks such that no two of the G × S golfers meet
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int: Weeks; int: GroupSize; enum Players = ...;
int: Groups=card(Players) div GroupSize;
assert Groups*GroupSize==card(Players): “invalid number of players”;
predicate maxOverlap(list of var set of $E:sets,int:n)=

forall(i,j in 1..length(sets) where i<J)
(card(sets[i] intersect sets[j])=<n);

array[1..Weeks,1..Groups] of var set of Players: group;
constraint

forall(i in 1..Weeks)
(maxOverlap([group[i,j] | j in Groups],0));

constraint
forall(i in 1..Weeks,j in 1..Groups)

(card(group[i,j])==GroupSize);
constraint

maxOverlap([group[i,j] | i in 1..Weeks,j in 1..Groups],1);

Figure 12: Zinc specification for the social golfer problem

cst weeks, groups, groupsize:N
dom Players=1..groups*groupsize, Weeks=1..weeks, Groups=1..groups;
var Sched :(Players×Weeks)→ groupsize×weeksGroups
solve
∀(h:Groups,w:Weeks)count(groupsize)

(p:Players |Sched(p,w)=h) ∧
∀(p1 < p2:Players)count(0..1)

(w:Weeks |Sched(p1,w)=Sched(p2,w))

Figure 13: ESRA specification for the social golfer problem

more than once. Here we reproduce specifications for the social golfer problem in five other
languages. These are taken from [11] and are in Zinc (Figure 12), ESRA (Figure 13), OPL
(Figure 14), NP-Spec (Figure 15) and Essence (Figure 16: the unusual brackets are part of
the language). These can be compared to the Kolmogorov specification in Figure 8.
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int weeks=...; int groups=...; int groupsize=...;
range Weeks 1..weeks; range Groups 1..groups;
range Players 1..groups*groupsize;
var Groups Schedule[Players,Weeks];
subject to {

forall(w in Weeks & g in Groups) (sum(p in Players)
(Schedule[p,w]=g)=groupsize);

forall(ordered p1,p2 in Players) (sum(w in Weeks)
(Schedule[p1,w]=Schedule[p2,w])<2);

}

Figure 14: OPL specification for the social golfer problem

DATABASE
weeks=6; groups=8; groupsize=4;

SPECIFICATION
IntFunc({1..groups*groupsize}><{1..weeks},Schedule,1..groups).
fail <- COUNT(Schedule(*,W,Gr),X), X!=groupsize.
fail <- Schedule(P1,W1,Gr1), Schedule(P2,W1,Gr1), P1!=P2,

Schedule(P1,W2,Gr2), Schedule(P2,W2,Gr2), W1!=W2.

Figure 15: NP-Spec specification for the social golfer problem

language ESSENCE 1.2.0
given w, g, s:int (∗1..)∗
letting golfers be new type of size g*s
find sched :set (∗size w)∗ of partition (∗numParts g, partSize s)∗ from golfers
such that ∀ week1 ,weeks2∈sched . week1 6=week2→

∀ group1∈parts(week1 ), group2∈parts(week2 ) . |group1∩group2 | < 2

Figure 16: Essence specification for the social golfer problem
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